A posteriori error estimation and anisotropy detection with the dual weighted residual method

نویسنده

  • Thomas Richter
چکیده

In this work we develop a new framework for a posteriori error estimation and detection of anisotropies based on the dual weighted residual method by Becker and Rannacher. The common approach for anisotropic mesh adaptation is to analyze the Hessian of the solution. Eigenvalues and eigenvectors indicate dominant directions and optimal stretching of elements. However this approach is firmly linked to energy norm error estimation. Here, we extend the dual weighted residual method to anisotropic finite elements allowing for the direct estimation of directional errors with regard to given output functionals. The resulting meshes reflect anisotropic properties of both the solution and the functional. For the optimal measurement of the directional errors, the coarse meshes need some alignement with the dominant anisotropies. Numerical examples will demonstrate the efficiency of this method on various three dimensional problems including a well known Navier-Stokes benchmark.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals

After a short introduction of a new nonconforming linear finite element on quadrilaterals recently developed by Park, we derive a dual weighted residual-based a posteriori error estimator (in the sense of Becker and Rannacher) for this finite element. By computing a corresponding dual solution we estimate the error with respect to a given target error functional. The reliability and efficiency ...

متن کامل

An Introduction to the A Posteriori Error Analysis of Elliptic Optimal Control Problems

We aim at a survey on adaptive finite element methods for optimal control problems associated with second order elliptic boundary value problems. Both unconstrained and constrained problems will be considered, the latter in case of pointwise control and pointwise state constraints. Mesh adaptivity is realized in terms of a posteriori error estimators obtained by using residual-type error contro...

متن کامل

Chapter 6 A posteriori error estimates for finite element approximations 6 . 1 Introduction

The a posteriori error estimation of finite element approximations of elliptic boundary value problems has reached some state of maturity, as it is documented by a variety of monographs on this subject (cf., e.g., [1, 2, 3, 4, 5]). There are different concepts such as • residual type a posteriori error estimators, • hierarchical type a posteriori error estimators, • error estimators based on lo...

متن کامل

Numerical analysis and a-posteriori error control for a new nonconforming linear finite element on quadrilaterals

Starting with a short introduction of the new nonconforming linear quadrilateral P̃1-finite element which has been recently proposed by Park ([13, 14]), we examine in detail the numerical behaviour of this element with special emphasis on the treatment of Dirichlet boundary conditions, efficient matrix assembly, solver aspects and the use as Stokes element in CFD. Furthermore, we compare the num...

متن کامل

Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z2 Symmetry

Abstract. In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier–Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork bifurcation occurs when...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014